Math 4300 Homework 7 Solutions
(1) $A=(1,3), \quad B=(-1,1)$

One can show that $l=\overleftrightarrow{A B}=L_{1,3}$
(a)

I shaded one half plane orange and the other blue.
The line l is in green.
Note that neither half-plane includes the line ℓ.

I labelled blue H_{1} and orange H_{2}, but you could reverse them
(b)

P and Q are on opposite sides of $l=L_{1,3}$ since $P \in H_{1}$ and $Q \in H_{2}$
(c)

P and Q are on the same side of $l=L_{13}$ since $P, Q \in H_{2}$
(2) $A=(1,2), B=(3,4)$

In previous homeworks, we saw that $l=\overleftrightarrow{A B}={ }_{5} L_{2 \sqrt{5}}$ where $2 \sqrt{5} \approx 4.47$
(a)

I shaded one half plane orange and the other blue.
The line l is in green.
Note that neither half-plane includes the line ℓ.

I labelled blue H_{1} and orange H_{2}, but you could
reverse reverse them
(b)
P and Q are on opposite sides of l. because $P \in H_{1}$ while $Q \in H_{2}$
(c)
P and Q are on the same side of l because $P \in H_{1}$ and $Q \in H_{1}$
(3)(a) Let $l=\overleftrightarrow{X Y}$, where $X \neq y$.

Let $f: l \rightarrow \mathbb{R}$ be a ruler on l.
Since $x \neq y$ we know $f(x) \neq f(y)$.
So either $f(x)<f(y)$ or $f(y)<f(x)$.
case 1: Suppose $f(x)<f(y)$.
Let $S=\{D \in l \mid f(x) \leq f(D) \leq f(y)\}$.
We must show that $\overline{x y}=S$.

Let $D \in \overline{X Y}=\{x, y\} \cup\{D \in g \mid x-D-y\}$
$\overline{X Y} \subseteq S:$
If $D=X$, then $f(X)=f(D)$ and so $D \in S$.
If $D=y$, then $f(D)=f(y)$ and so $D \in S$.
If $X-D-Y$, then by a theorem in class we know $f(x)<f(D)<f(y)$ and so $D E S$.

So in all cases, $D \in S$.
Thus, $\overline{x y} \leq s$.
$S \subseteq \overline{X y}$: Let $D \in S$.
Then, $f(x) \leqslant f(D) \leqslant f(y)$.
If $f(D)=f(X)$, then since f is une-to-one we must have that $D=X$ and so $D \in \overline{X Y}$.
If $f(D)=f(Y)$, then since f is one-to-one we must have that $D=y$ and so $D \in \overline{x y}$.
If $f(x)<f(D)<f(y)$, then $X-D-Y$ and so $D \in \overline{X Y}$.
These are all the cases thus $S \subseteq \overline{X Y}$.
From above $S=\overline{x y}$.
case 2: Suppose $f(y)<f(x)$.
Let $S=\{D \in l \mid f(y) \leqslant f(D) \leqslant f(x)\}$.
The proof that $S=\overline{X Y}$ is similar to the proof of case l.
Try it if you want more practice.
(3)(b) Let $l=\overleftrightarrow{x y}$ where $x \neq y$.

Let $f: l \rightarrow \mathbb{R}$ be a rules.
Since $x \neq y$ we know $f(x) \neq f(y)$.
So either $f(x)<f(y)$ or $f(y)<f(x)$.
Case 1:I Suppose $f(x)<f(y)$.
g is a ruler on e by a tho from class from topic 2
Define $g: l \rightarrow \mathbb{R}$ by

$$
g(c)=f(c)-f(x)
$$

since

Note that

$$
\begin{aligned}
& \text { Note that } \\
& \qquad g(x)=f(x)-f(x)=0 \\
& \text { and } g(y)=f(y)-f(x)>0
\end{aligned}
$$

$$
\left\lvert\, \begin{aligned}
& \text { Since } \\
& f(y)>f(x)
\end{aligned}\right.
$$

$$
\text { in case } 1
$$ and $g(y)>0$.

By a theorem in class, we have

$$
\overrightarrow{x y}=\{c \in o>\mid 0 \leq g(c)\}
$$

Since $g(c)=f(c)-f(x)$

$$
\begin{aligned}
\overrightarrow{x y} & =\{c \in \mathcal{F} \mid 0 \leq f(c)-f(x)\} \\
& =\{c \in \mathcal{F} \mid f(x) \leq f(c)\}
\end{aligned}
$$

Case 2:- Suppose $f(y)<f(x)$.
Define $g: l \rightarrow \mathbb{R}$ by

$$
\begin{aligned}
& \text { fine } g: l \rightarrow \mathbb{R} \text { by } \\
& g(c)=-(f(c)-f(x))
\end{aligned}
$$

9 is a ruler by a tho from class from topic 2
Then, $g(x)=-(f(x)-f(x))=0$ and $g(y)=-(f(y)-f(x))=f(x)-f(y)>0$.
Then, as in case 1 we will have

$$
\begin{aligned}
\overrightarrow{x y} & =\{c \in \mathcal{F} \mid 0 \leq g(c)\} \\
& =\{c \in \mathscr{F} \mid 0 \leq-(f(c)-f(x))\} \\
& =\{c \in \mathscr{F} \mid 0 \leq-f(c)+f(x)\} \\
& =\{c \in J \mid f(c) \leq f(x)\}
\end{aligned}
$$

(4)

Let A, B be distinct points in $S \cap T$. Then $A, B \in S$ and $A, B \in T$.
Since S is convex we have $\overline{A B} \subseteq S$.
Since T is convex we have $\overline{A B} \subseteq T$.
Thus, $\overline{A B} \subseteq S \cap T$.
So, $S \cap T$ is convex.

(5)(a) ϕ is convex means:
$(\forall P, Q \in \phi)($ If $P \neq Q$, then $\overline{P Q} \subseteq \phi)$
There are n. $P, Q \in \phi$ so this statement is trove.
(5)(b) $\{A\}$ is convex means:

$$
(\forall P, Q \in\{A\})(\text { If } P \neq Q \text {, then } \overline{P Q} \subseteq\{A\})
$$

There is only the case when $P=A, Q=A$
 a true statement $\binom{$ Recall "If F, then -" }{ is always true }

Thus, $\{A\}$ is convex.
(5) (c)

Let $P, Q \in P$.
Then, $\overline{P Q}=\{P, Q\} \cup\{C \in P \mid P-C-Q\}$
By def $\overline{P Q} \subseteq \partial$.
So, \mathcal{Z}^{2} is convex.
(5)(d) Let $A, B \in O$ where $A \neq B$. Let $l=\overleftrightarrow{A B}$. Let $P, Q \in \overline{A B}$ where $P \neq Q$.
Goal: we must show that $\overline{P Q} \subseteq \overline{A B}$.
This will show that $\overline{A B}$ is convex.
Since $P, Q \in \overrightarrow{A B}$ we have $l=\overleftrightarrow{A B}=\overleftrightarrow{P Q}$.
Let $f: l \rightarrow \mathbb{R}$ be a ruler.
Since $A \neq B$ we have
either $f(A)<f(B)$ or $f(B)<f(A)$.
Since $\overline{A B}=\overline{B A}$, we may assume that $f(A)<f(B)$. Otherwise, just interchange A and B and relabel them.

Suppose $f(A)<f(B)$.
Since $P, Q \in \overline{A B}$ from problem 3 of this homework we have $f(A) \leq f(P) \leq f(B)$ and $f(A) \leq f(Q) \leq f(B)$.
Now break this into 2 cases.

If $f(P)<f(Q)$, then

$$
\begin{aligned}
\text { If } & f(P)<f(Q) \\
\overline{P Q} & =\{c \in \mathscr{P} \mid f(P) \leq f(c) \leqslant f(Q)\} \\
& \subseteq\{c \in \mathscr{P} \mid f(A) \leq f(c) \leq f(B)\}=\overline{A B}
\end{aligned}
$$

4
if $f(P) \leqslant f(c) \leqslant f(Q)$,
then $f(A) \leq f(P) \leq f(C) \leq f(Q) \leq f(B)$

If $f(Q)<f(P)$, then

$$
\begin{aligned}
\text { If } & f(Q)<f(P)\} \\
\overline{P Q} & \stackrel{\sim}{=}\{c \in \mathscr{P} \mid f(Q) \leq f(c) \leq f(P)\} \\
& \subseteq\{c \in \mathscr{D} \mid f(A) \leq f(c) \leq f(B)\}=\overline{A B}
\end{aligned}
$$

4
if $f(Q) \leqslant f(C) \leqslant f(P)$,
then $f(A)^{(*)} \leq f(Q) \leq f(C) \leq f(P)^{(+)} \leq f(B)$
In both causes, $\overline{P Q} \subseteq \overline{A B}$. Thus, $\overline{A B}$ is convex.
(5)(e) Let A, B be distinct points.

We want to show that

$$
\text { int }(\overline{A B})=\overline{A B}-\{A, B\}
$$

 is convex.
Let $l=\overrightarrow{A B}$.
Let $f: l \rightarrow \mathbb{R}$ be a ruler.
We can have $f(A)<f(B)$ or $f(B)<f(A)$.
Since $\operatorname{int}(\overline{A B})=\overline{A B}-\{A, B\}=\overline{B A}-\{A, B\}=\operatorname{int}(\overline{B A})$
we may assume that $f(A)<f(B)$
0 therwise, just interchange and relabel A and B.
Thus, assume $f(A)<f(B)$.

From problem 3 we have

$$
\begin{aligned}
& \text { rom problem } 3 \text { we have } \\
& \overline{A B}=\{C \in D \mid f(A) \leq f(c) \leqslant f(B)\} \\
&
\end{aligned}
$$

Since $\operatorname{int}(\overline{A B})=\overline{A B}-\{A, B\}$ we get

$$
\begin{aligned}
& \text { ace } \operatorname{int}(\overline{A B})=A B-\{A, D) \\
& \operatorname{int}(\overline{A B})=\{c \in D \mid f(A)<f(c)<f(B)\}
\end{aligned}
$$

Let $P, Q \in \operatorname{int}(\overline{A B})$. We must show that $\overline{P Q} \subseteq \operatorname{int}(\overline{A B})$.

This will show that int ($\overline{A B}$)
 is convex.
Since $P, Q \in \operatorname{int}(\overline{A B})$ we know that $f(A)<f(P)<f(B)$ and $f(A)<f(Q)<f(B)$

If $f(P)<f(Q)$, then

$$
\begin{aligned}
& =\text { Problem } \\
\overline{P Q} & =\{c \in \mathcal{O} \mid f(P) \leqslant f(c) \leqslant f(Q)\} \\
& =\{c \in \mathcal{D} \mid f(A)<f(c)<f(B)\} \\
& \text { w Since } f(A)<f(P) \text { and } f(Q)<f(B)\}
\end{aligned}
$$

$$
=\operatorname{int}(\overline{A B})
$$

So, $\overline{P Q} \subseteq \operatorname{int}(\overline{A B})$.

If $f(Q)<f(P)$, then

\[

\]

$$
=\operatorname{int}(\overline{A B})
$$

So, $\overline{P Q} \subseteq \operatorname{int}(\overline{A B})$.

In either case $\overline{P Q} \subseteq \operatorname{int}(\overline{A B})$.
So, int $(\overline{A B})$ is convex.
(5)(f) Let $P, Q \in \overleftrightarrow{A B}$.

Then $\overleftrightarrow{P Q}=\overleftrightarrow{A B}$.
Thus, $\overrightarrow{P Q} \subseteq \overleftrightarrow{P Q}=\overleftrightarrow{A B}$.
So, $\overleftrightarrow{A B}$ is convex.
(5)(g) Le $+A, B$ be distinct points.

Let $f: l \rightarrow \mathbb{R}$ be a ruler on $l=\overleftrightarrow{A B}$ where $f(A)=0$ and $f(B)>0$.

Then

Let $P, Q \in \overrightarrow{A B}$ be distinct $P \xrightarrow{p o i n t s}$.
We must show that $\overrightarrow{P Q} \subseteq \overrightarrow{A B}$.
Since $P, Q \in \overrightarrow{A B}$ we know that $0 \leqslant f(\rho)$ and $0 \leqslant f(Q)$.

Case 1: Suppose $f(Q)<f(P)$ problem 3 We have that

$$
\begin{aligned}
& \text { We have that } \\
& \begin{aligned}
\overline{P Q} & \stackrel{\curvearrowleft}{=}\{c \in g \mid \underbrace{f(Q)}_{0 \leq f(Q)} \leqslant f(c) \leq f(P)\} \\
& \subseteq\{c \in \mathcal{O} \mid 0 \leq f(c)\}=\overrightarrow{A B}
\end{aligned}
\end{aligned}
$$

So we get $\overrightarrow{P Q} \subseteq \overrightarrow{A B}$.
Case 2: Suppose $f(P)<f(Q)$.
problem 3
Then,

$$
\begin{aligned}
& \overrightarrow{P Q}=\{c \in D^{p} \mid \underbrace{f(p)}_{0 \leq f(p)} \leq f(c) \leq f(Q)\} \\
& \\
& \leq\{c \in g \mid 0 \leq f(c)\}=\overrightarrow{A B}
\end{aligned}
$$

So we get $\overrightarrow{P Q} \subseteq \overrightarrow{A B}$.
In either care we get that $\overline{P Q} \subseteq \overrightarrow{A B}$.
So, $\overrightarrow{A B}$ is convex.
(5) (h) Let A, B be distinct points.

We wast to show that

$$
\operatorname{int}(\overrightarrow{A B})=\overrightarrow{A B}-\{A\}
$$

is convex.

Let $\ell=\stackrel{A B}{ }$.
Let $f: \ell \rightarrow \mathbb{R}$ be a
ruler where $f(A)=0$ and $f(B)>0$.
Then, from class we have that

$$
\overrightarrow{A B}=\{c \in \sigma \mid 0 \leq f(c)\}
$$

Since $f(A)=0$ and f is une-to-one this gives us that

$$
\begin{aligned}
& \text { int }(\overrightarrow{A B})=\{c \in P \mid 0<f(C)\} \\
& \text { this gives us that } \\
& (\overrightarrow{A B})
\end{aligned}
$$

Let $P, Q \in \operatorname{int}(\overrightarrow{A B})$.
Goal: We must show that $\overline{P Q} \subseteq$ int $(\overrightarrow{A B})$ to show that int $(\overrightarrow{A B})$ is convex.

Then, from above we have that $0<f(P)$ and $0<f(Q)$.

Case 1: Suppose $0<f(P)<f(Q)$.

$$
\begin{aligned}
& \text { hen, we have } \\
& \overline{P Q} \stackrel{=}{=}\{c \in D \mid f(P) \leq f(c) \leq f(Q)\}
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
& \stackrel{\perp}{=}\{c \in g \mid f(P) \leq f(c) \\
& \subset\{c \in D \mid 0 \leq f(c)\}=\operatorname{int}(\overrightarrow{A B})
\end{aligned}
$$

since $0<f(P)$
So, $\overrightarrow{P Q} \leq \operatorname{int}(\overrightarrow{A B})$.

Case 2: Suppose $0<f(Q)<f(\rho)$.
Then, we have that
problem 3

$$
\begin{aligned}
\overline{P Q} & =\{c \in \mathcal{J} \mid f(Q) \leq f(c) \leq f(\rho)\} \\
& \subseteq\{c \in \mathcal{F} \mid 0 \leq f(c)\}=\operatorname{int}(\overrightarrow{A B})
\end{aligned}
$$

Since $0<f(Q)$
So, $\overline{P Q} \subseteq \operatorname{int}(\overrightarrow{A B})$.

In both cases $\overline{P Q} \subseteq \operatorname{int}(\overrightarrow{A B})$.
So, int $(\overrightarrow{A B})$ is convex.
(6) (a)

Let l be a line and $P \notin l, Q \notin l$.
Let H_{1}, H_{2} be the half-planes determined by l.
$(\lrcorner)]$ Suppose P and Q lie on opposite sides of l.
If $P \in H_{1}$ and $Q \in H_{2}$, the by $P S A$ (iv) We have $\overline{P Q} \cap l \neq \phi$
If $P \in H_{2}$ and $Q \in H_{1}$, then by $P S A$ (is) we have $\overline{P Q} \cap l \neq \phi$.
(〈)) Suppose $\overline{P Q} \cap \ell \neq \phi$.
Why must P and Q lie on opposite sides of l ? Suppose they didn't, ie they were on the same side of l. Without loss of generality, assume $P, Q \in H_{1}$.
H_{1} is convex so $\overline{P Q} \subseteq H_{1}$
But $l \cap H_{1}=\phi$
So, if $\overline{P Q} \subseteq H_{1}$ then $\overline{P Q} \cap l=\phi$ which is a contradiction.

Thus, P and Q lie on opposite sides of l.
(6) (b)

Let l be a line and $P \notin l, Q \notin l$.
Let H_{1}, H_{2} be the half-planes determined by l.
(\Rightarrow) Suppose P and Q lie on the same side of l.
Without loss of generality, suppose $P, Q \in H_{1}$.
Since H_{1} is convex we have $\overline{P Q} \subseteq H_{1}$,
Since $H_{l} \cap l=\phi$ and $\overline{P Q} \subseteq H_{1}$ we know $\overline{P Q} \cap l=\phi$.
$((\beta)$ Suppose $\overline{P Q} \cap l=\phi$.
We want to show that P, Q lie on the
Suppose they lie on opposite sides of l.
Suppose $P \in H_{1}$ and $Q \in H_{2}$, then by PSA (iv) we would have $\overline{P Q \cap l} \neq \phi$ same thing if $P \in H_{2}$ and $Q \in H_{1}$
Thus, P, Q lie on the same side of l.
(7) Let H_{1}, H_{2} be the half-planes determined by l.
Suppose P and Q are on opposite sides of l, and Q and R are on opposite sides of l.
Since P and Q tie on apposite sides of l then either (i) $P \in H_{1}$ and $Q \in H_{2}$ or (ii) $P \in H_{2}$ and $Q \in H_{1}$.

Case 1: Suppore $P \in H_{1}$ and $Q \in H_{2}$.
Since $Q \in H_{2}$ and Q and R lie on opposite sides of l we must have $R \in H_{1}$.
Thus, $P \in H$, and $R \in H$, the same side of l. so, P and R lie on

Case 2: Suppore $P \in H_{2}$ and $Q \in H_{1}$. Since $Q \in H_{1}$ and Q and R lie on opposite sides of l we must have $R \in H_{2}$
Thus, $P \in H_{2}$ and $R \in H_{2}$. so, P and R lie on

(8) Let H_{1}, H_{2} be the half-planes determined by l.
Suppose P and Q are on opposite sides of l, and Q and R are on the same side of l.
Since P and Q tie on opposite sides of l then either (i) $P \in H_{1}$ and $Q \in H_{2}$ or (ii) $P \in H_{2}$ and $Q \in H_{1}$.

Case 1: Suppore $P \in H_{1}$ and $Q \in H_{2}$.
Since $Q \in H_{2}$ and Q and R lie on the same side of l we must have $R \in H_{2}$

Thus, $P \in H_{1}$ and $R \in H_{2}$
So, P and R lie on opposite sides of l.
Case 2: Suppore $P \in H_{2}$ and $Q \in H_{1}$.
Since $Q \in H$, and Q and R lie on the same side of l we must have $R \in H$,

Thus, $P \in H_{2}$ and $R \in H_{1}$. So, P and R lie on opposite sides of l.

